Spectral-Analysis-of-Surface-Waves (SASW) Method

Surface Wave Techniques to Evaluate Subsurface Stiffness Structure

Sung-Ho Joh

■ Principles and Concepts of the SASW Method

Setup for SASW Measurements

• FFT Analyzer

Geophones

• Seismic Sources

■ Principles of Phase-Velocity Measurement

■ Phase-Velocity Determination in SASW Method

■ Inversion Analysis in the SASW Method

Inversion Analysis for the SASW Method: Global and Array Inversion Analyses

Dispersion Curve for Global Inversion Analysis

Dispersion Curve for Array Inversion Analysis

Inverted Shear-wave Velocity Profiles

■ Impulse Response Filtration (IRF) Technique

• Random Noise Added to the Theoretically Determined Displacements

Comparison of the Original and IRF-Enhanced Phase Spectra

■ WinSASW, Dedicated Software for the SASW Method

■ Recent Development in the SASW Method

CMP SASW Method vs. CAP SASW Method

■ Evaluation of 2-D Shear-Wave Velocity Profiles

CAP SASW Method

• MASW Method

■ SASW Method for Deep Profiling

Low-frequency vibroseis, 64,000 lb-heavy Liquidator

Typical time histories of a vibroseis source

■ Applications of the SASW Method

Applications of the SASW Method

Geotechnical Sites Pavement Systems Concrete Structures

- NDE of asphalt pavements
- Modulus and thickness of pavement layer, subgrade and grade
- Evaluation of Compaction Quality
- Site Investigation of
 - MSW Landfill
 - Road bed or Railroad bed
- Evaluation of Vacuum Consolidation
- Shear-Wave Velocity Profile for Seismic Analysis

- Structural Integrity test of
 - Tunnel Concrete Lining
 - Concrete Bridge Deck
 - Retaining Wall

Quality Assurance of Compaction

Compaction by Hydraulic Hammer:

Runway of Inchon International Airport

Comparison of Shear-Wave Velocity before and after Compaction

■ Site Investigation at Man-Made Island

Stiffness
 Profiling of
 Engineering
 Fill

Treasure Island in San Francisco

 Comparison of Shear-Wave Velocity Profiles from SASW and Crosshole Tests

■ Site Investigation of MSW Landfill Site

 Vs Profiling of Oll Landfill at LA, USA:

Comparison between SASW Results and Results of OYO Suspension Logging

■ Stiffness Profiling of Ballast and Railroad Bed

Vs Profiling
 of Ballast
 and Railroad
 Bed to
 Investigate
 Mud
 Pumping

Shear-WaveVelocity Profilesfrom InversionAnalyses

■ V_s Profiling of Asphalt Pavement System

■ Stiffness Evaluation of Soil Layers under Airport Runway

• JFK Airport, New York

Experimental Dispersion Curve for Runway of JFK Airport (Expanded for Long Wavelengths)

Before Tunneling

After Tunneling

■ Investigation for Tunnel Concrete Lining (1)

NDE for Tunnel Concrete Lining:

Road Tunnel

• 1-D Shear Wave Velocity Profile

• 2-D Stiffness Profile

1-D Phase Velocity profile in Wavelength-Distance Domain

2-D Shear-Wave Velocity Profile of Tunnel Concrete Lining in Depth-Distance Domain

■ Investigation for Tunnel Concrete Lining (2)

(a) Generalized Tunnel Cross Section

(b) SASW Testing Arrangement and Planes of Investigation

SASW testing performed inside a concrete-lined tunnel (from Stokoe and Santamarina, 2000)

(a) Interpreted V_s profile at a springline station

(b) Interpreted V_s profile at a "crown" station Examples of V_s profiles measured inside a concrete-lined tunnel (from Stoke and Santamarina, 2000)

(a) Generalized Tunnel Cross Section

(b) Interpreted V_s profile at a springline station

(b) SASW Testing Arrangement and Planes of Investigation

(b) Interpreted V_s profile at a "crown" station

Examples of V_s profiles measured inside a concrete-lined tunnel (from Stoke and Santamarina, 2000)

■ Investigation of Surface Cracks in Concrete Runway

■ Investigation of Damanaged Area after Explosion

Thank you for your attention!

감사합니다.